Nodulation of Crotalaria podocarpa DC. by Methylobacterium nodulans displays very unusual features.

نویسندگان

  • Adeline Renier
  • Sergio Miana De Faria
  • Philippe Jourand
  • Eric Giraud
  • Bernard Dreyfus
  • Sylvie Rapior
  • Yves Prin
چکیده

Crotalaria are plants of the Fabaceae family whose nodulation characteristics have been little explored despite the recent discovery of their unexpected ability to be efficiently nodulated in symbiosis with bacteria of the genus Methylobacterium. It has been shown that methylotrophy plays a key role in this unusual symbiotic system, as it is expressed within the nodule and as non-methylotroph mutants had a depleting effect on plant growth response. Within the nodule, Methylobacterium is thus able to obtain carbon both from host plant photosynthesis and from methylotrophy. In this context, the aim of the present study was to show the histological and cytological impacts of both symbiotic and methylotrophic metabolism within Crotalaria podocarpa nodules. It was established that if Crotalaria nodules are multilobed, each lobe has the morphology of indeterminate nodules but with a different anatomy; that is, without root hair infection or infection threads. In the fixation zone, bacteroids display a spherical shape and there is no uninfected cell. Crotalaria nodulation by Methylobacterium displayed some very unusual characteristics such as starch storage within bacteroid-filled cells of the fixation zone and also the complete lysis of apical nodular tissues (where bacteria have a free-living shape and express methylotrophy). This lysis could possibly reflect the bacterial degradation of plant wall pectins through bacterial pectin methyl esterases, thus producing methanol as a substrate, allowing bacterial multiplication before release from the nodule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes.

Rhizobia described so far belong to three distinct phylogenetic branches within the alpha-2 subclass of Proteobacteria. Here we report the discovery of a fourth rhizobial branch involving bacteria of the Methylobacterium genus. Rhizobia isolated from Crotalaria legumes were assigned to a new species, "Methylobacterium nodulans," within the Methylobacterium genus on the basis of 16S ribosomal DN...

متن کامل

Nodule morphology, symbiotic specificity and association with unusual rhizobia are distinguishing features of the genus Listia within the Southern African crotalarioid clade Lotononis s.l.

BACKGROUND AND AIMS The legume clade Lotononis sensu lato (s.l.; tribe Crotalarieae) comprises three genera: Listia, Leobordea and Lotononis sensu stricto (s.s.). Listia species are symbiotically specific and form lupinoid nodules with rhizobial species of Methylobacterium and Microvirga. This work investigated whether these symbiotic traits were confined to Listia by determining the ability of...

متن کامل

Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands

Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing livelihood to over a billion people. While normally dominated by perennial C4 grasses, these rangelands are increasingly affected by the massive spread of native, mainly woody legumes. The consequences are often a repression of grass cover and productivity, leading to a reduced carrying capacity. While such ...

متن کامل

New aspect of plant-rhizobia interaction: alkaloid biosynthesis in Crotalaria depends on nodulation.

Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosyn...

متن کامل

Isolation and genetic characterization of Aurantimonas and Methylobacterium strains from stems of hypernodulated soybeans.

The aims of this study were to isolate Aurantimonas and Methylobacterium strains that responded to soybean nodulation phenotypes and nitrogen fertilization rates in a previous culture-independent analysis (Ikeda et al. ISME J. 4:315-326, 2010). Two strategies were adopted for isolation from enriched bacterial cells prepared from stems of field-grown, hypernodulated soybeans: PCR-assisted isolat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 62 10  شماره 

صفحات  -

تاریخ انتشار 2011